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Motivation
CRESCENDO
Novel observational global datasets of land-surface variables are expected to significantly enhance understanding and representation of land S 2 S 4 E
surface processes representation in Earth System Models (ESMs). The observational analysis (Catalano et al. 2016) unveiled novel important +

observational constraints that has driven the development of new process-based parameterizations in HTESSEL (i.e. the land-surface model ﬁ ‘ Climate Services

included in the EC-Earth ESM). for Clean Energy
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to realistic vegetation representation

Sets of Experiments
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Improved Vegetation Representation
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3. New interactive soil albedo in EC-Earth 4. Preliminary evaluation of the improved soil albedo representation
We introduced realistic soil albedo that can vary seasonally and interannually as Near-infrared-parallel
a function of soil moisture. anom. Cofrr.
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Figure 4: Soil texture and soil color maps used for the discretization.
5. Summary and Conclusions
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