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CSTools: a new R package for the calibration, 
combination, downscaling and analysis of 
seasonal forecasts
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RainFARM is a stochastic precipitation downscaling method which 
produces, from large-scale spatio-temporal precipitation fields, 
ensembles of stochastic realizations at finer spatial resolution 
(typically 1 km),

RainFARMRainFARM

The  availability  of  climate  data  has  never  been  larger,  as  evidenced  by  the  development  of  the  Copernicus Climate  Change  Service.  However,  availability  of  climate  data  does  not  
automatically  translate  into  usability and sophisticated post-processing is often required to turn these climate data into user-relevant climate information allowing them to develop and implement strategies 
of adaptation to climate variability and to trigger decisions. Developed  under  the  umbrella  of  the  ERA4CS  Medscope  project  by  multiple  European  partners,  here  we present a R package currently 
in development, which aims to provide tools to exploit dynamical seasonal forecasts such as to provide information relevant to public and private stakeholders at the seasonal timescale. This toolbox, called 
CSTools (short for Climate Service Tools), contains process-based methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination and multivariate 
verification, as well as basic and advanced tools to obtain tailored products.

Fig 1: Application of the RainFARM method to an event 
which occurred on 2010-08-17. On the left is the original 
ECMWF System 5 precipitation forecast at 1° resolution 
and on the right is the precipitation downscaled to a 
target resolution of 0.05°, using a fine-scale 
precipitation climatology for orographic correction.
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Fig 6: PlotForecastPDF applied to three seasonal surface 
wind speed forecasts. Each panel corresponds to a different 
start date. Each ensemble member (yellow circle) and the 
observation for that month (purple diamond) are drawn for 
each forecast. The probability of each tercile is shown in 
different colored shadows: above normal (brown), normal 
(grey), below normal (blue) and their value is specified on 
the left axis. The probabilities above 90th (below 10th) 
percentile are displayed with a red (blue) striped 
background. An asterisk marks the tercile with the highest 
probability. 
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ADAMONTADAMONT
The ADAMONT method is a quantile mapping method for 
statistical adjustment of climate simulations  uses analogs based 
on weather regimes to provide sub-daily disaggregation of data, 
which is necessary for providing input to certain type of models, 
such as hydrological models.

This function performs a quantile 
mapping based on a dynamical 
classification. Following a non-
linear approach (Faranda et al, 
2019), the function computes 
two dynamical properties 
(distance and persistence) of the 
underlying attractor (SLP/SST). 
Those proxies are then used to 
classify the data in terciles. Once 
the data is classified, a simple 
quantile mapping approach is 
applied. 

Fig 8: This figure shows an example of the phase-space 
diagram of the dynamical proxies (local dimension and 
persistence) computed for the observations of SST. Maps 
show the SST anomalies in each of the four clusters: (1) 
high persistence (theta) associated to colder SST 
anomalies, (2) high local dimension (d) associated to 
colder SST anomalies, (3) low persistence (theta) 
associated to warmer anomalies,  and (4) low local 
dimension (d) associated to warmer anomalies. These 
four parameters in SST will be used to classified the data 
and apply an empirical quantile map to the 
precipitation/temperature field associated.  Thus, as has 
been demonstrated in Faranda et al 2019 the 
predictability (low local dimension) of the system increase 
with a warmer ocean, a key information for seasonal 
forecast. 

Downscale AnalogDownscale Analog
This function makes 
successive use of analogs 
based on Euclidean 
distance and regression to 
downscale maximum and 
minimum temperature and 
precipitation. It requires  
historical observations  
based on a new 5 km 
resolution gridded dataset 
covering the whole Iberian 
Peninsula (or other 
regions).

Fig 3: Example of the spatial distribution of the 
downscaling daily winter precipitation (mm/day) of 
ERA Interim (ERAI, upper-left panel), AEMET 
observational database (OBS, upper-right panel), 
downscaling ERA Interim-based (lower-left panel) 
and of the bias (lower-right panel), averaged over 
the period 1997-2016.

ENSClusENSClus
This function, based on a clustering algorithm, takes N ensemble 
members from one (or more) forecasting system(s) and groups together 
those that show similar seasonal anomalies of a given variable (for 
example 2m air temperature) over the Mediterranean region.  The number 
of clusters and the variable can be selected by the user. However, since 
the clustering is intended as a summary of the ensemble information, the 
maximum number of clusters is supposed to be at least an order of 
magnitude smaller than the ensemble size. Each cluster is represented by 
one of its members: the forecast closest to the centroid of the cluster. The 
representative members of the clusters are referred to as "Seasonal 
Forecast Scenarios".

Fig 5: EnsClus has been applied here to 
the ECMWF seasonal forecasts (System 
5) of 2m temperature in the 
Mediterranean area relative to Summer 
2017 (JJA). The 51 ensemble forecasts 
anomalies are grouped in 4 scenarios and 
compared with the observed anomaly 
from ERA-Interim reanalysis (top left 
panel). The best representative members 
of the 4 scenarios are shown on the right 
panels. The Taylor diagram in the bottom 
left panel shows the relative agreement 
between the forecasts and the 
observation: observation is shown in 
black and the ensemble members are 
plotted according to their standard 
deviation (radial axis) and correlation 
coefficient (polar axis). The member 
performing better in foreseeing the 
observed anomaly pattern belongs to 
cluster 0.
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This function produces a map 
with the probability of the most 
likely category (e.g. terciles) for 
a particular forecast. It also 
allows complementing this 
information with a skill metric to 
mask those regions where the 
forecasts are not skilful.

SMOPSMOP
Statistical method for the spatialization and 
downscaling of precipitation in mountainous areas. 
This function performs an interpolation and a 
statistical downscaling. A sub-grid refinement is 
produced by combining local scale processes causing 
orographic rainfall (analytical) and large-scale 
precipitation component (from climate models), in a 
spatial autoregressive framework. The relative 
contribution of local and large-scale sources is 
adjusted with observations (Marson et al, in review)

Fig 9: Sub-grid refinement 
by combining local scale 
processes causing 
orographic rainfall 
(analytical) and large-scale 
precipitation component 
(from climate models) in a 
spatial autoregressive 
framework. The relative 
contribution of local and 
large-scale sources is 
adjusted with observations. 
The approach may be used 
as kernel for predictive 
downscaling techniques.

This function calibrates the ensemble forecast by adjusting the 
ensemble mean, the total forecast variance and the ensemble 
variance to obtain an accurate but also reliable ensemble. There is 
no Gaussian assumption underlying this calibration and it preserves 
the spatio-temporal correlation structure of the original ensemble 
forecast.

Ensemble calibrationEnsemble calibration

Fig 4: Forecast verification of the ECMWF IFS 
raw forecasts (black lines) of the Nino 3.4 index, 
the drift-corrected forecasts (green lines) and the 
ensemble-corrected forecasts (red lines). Left: 
Continuous ranked probability score (CRPS) 
against lead time. The full green and red line are 
obtained by using four calibrations, one for each 
season, while the dotted lines are obtained using 
one calibration, using all available data. Right: 
RMSE (circles) and ensemble standard deviation 
(triangles) against lead time. Uncertainty intervals 
delineate the 95% confidence intervals assuming 
normal error statistics.

Fig 13: Example of the multivariate 
RMSE for surface air temperature 
and precipitation combined, from 
1992 to 2012, using the Glosea5 
seasonal forecasting system over 
Europe. In this example, 
temperature is assigned a weight of 
2 and precipitation a weight of 1.

MultiVarRMSEMultiVarRMSE

This function calculates 
the RMSE from multiple 
variables at once. The 
multivariate RMSE is 
computed as the mean of 
each variable's RMSE 
scaled by its observed 
standard deviation. The 
variables can also be 
weighted based on their 
relative importance, as 
defined by the user.

Fig 12: 
Probability that 
the total 
precipitation 
from November 
2012 to March 
2013 will be in 
the lower tercile 
based on the 
best NAO pdf 
estimate.

This function applies the statistical estimation theory to 
obtain the best linear unbiased estimation of NAO. Two 
Gaussian distributions, modelling the predicted winter 
NAO pdf, are used as prior estimates. They represent 
the ECMWF System 5 after bias correction and a skilful 
empirical relationship, respectively. Forecasted ECMWF 
System 5 members are then weighted according to the 
a posteriori NAO Gaussian pdf.

Best NAO weightingBest NAO weighting

Fig 10: Gaussian pdfs 
representing the forecasted NAO 
distribution for winter 2012-2013 
by the bias corrected ECMWF 
System 5 (red), S-ClimWare 
empirical system (green) and the a 
posteriori Best NAO estimate 
(blue).

Fig 11: Original 
probability from 
ECMWF 
Seasonal 
Forecast System 
5 that the total 
precipitation 
from November 
2012 to March 
2013 will be in 
the lower tercile.

MultiMetricMultiMetric
This function calculates the 
anomaly correlation 
coefficient (ACC), the root 
mean square error (RMS) 
and the root mean square 
error skill score (RMSSS) 
of individual models and 
multi-model  ensemble 
forecasts. It can also be 
used to identified the best 
model/forecast over a 
particular region, as well 
as the particular level of 
skill over that region.

Terzago, S., Palazzi, E., and von Hardenberg, J. (2018). Stochastic downscaling of 
precipitation in complex orography: a simple method to reproduce a realistic fine-scale 
climatology, Nat. Hazards Earth Syst. Sci., 18, 2825-2840, doi: https://doi.org/10.5194/nhess-
18-2825-2018

The CSTools R package is on the CRAN repository:  https://cran.r-project.org/package=CSTools

which preserve the large-
scale statistical properties 
of the original field and 
with realistic spatial 
correlation structures. It 
also corrects precipitation 
over complex orography 
using weights based on 
existing fine-scale 
precipitation climatology.

This function plots one or several 
probabilistic ensemble forecasts side by 
side. For each forecast, it displays the 
ensemble members and a probability 
distribution function obtained from 
dressing the ensemble members. The 
probabilities for the three tercile 
categories and the above P10 and below 
P90 categories are also displayed. The 
observation can be added as well.

Fig 2: Daily precipitation anomalies at 1500m 
over the Alps massifs in the SAFRAN-Nivo 
reanalysis according to the North Atlantic 
weather regimes for DJF 1992-2014. This 
highlights the interest of bias-correcting 
seasonal predictions over the Euro-
Mediterranean region with a dependency on 
weather regimes as will be possible with 
ADAMONT.

Fig 7: Probabilistic most likely quintile map of 10-
m wind speed for ECMWF System 4 seasonal 
forecast for DJF 2016-2017. The predictions were 
issued the 1st of November 2016. The most likely 
category and its percentage of probability to occur 
is shown. White colour indicates that the forecasts 
probabilities are below the 30% for all five 
categories. The reference dataset is ERA-Interim 
and the climatological period 1981-2015. 

Fig 14: Spatial representation of the 
highest correlation values for each grid 
point obtained for three different models - 
GloSea5 (blue), ECMWF System 5 (red) 
and Météo-France System 5 (yellow) 
seasonal forecasting systems as well as 
the ensemble mean (MMM - grey) versus 
a reference dataset. 
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