Seamless and cross-scale modelling of the ocean: from regional to shelf-coastal and harbour scale

I. Federico⁽¹⁾, I. Barletta^(1,2), G. Verri⁽¹⁾, S. Causio⁽¹⁾,

F. Montagna⁽¹⁾, G. Coppini⁽¹⁾,

E. Di Lorenzo⁽³⁾, N. Pinardi^(1,2)

- (1) Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy
- (2) Department of Physics and Astronomy, University of Bologna, Italy
- (3) Georgia Institute of Technology, Atlanta, U.S.A.

Modelling approach

Motivation and aim

- Reproduce a seamless transition of different oceanographic scales (detailed focus on shelf-coastal, narrow straits and harbour scale) with a unique-continuum grid and appropriate variable resolution
- Exploit this continuity to investigate the exchanges of inter-connected basins
- Downscaling from consolidated models

Operational Forecasting and Unstructured-grid modelling

Development and implementation of operational modelling systems based on SHYFEM model

- SHYFEM (Umgiesser et al., 2004; Bellafiore and Umgiesser, 2008; Ferrarin et al., 2018) model: finite-element three-dimensional thermo-hydro-dynamic model (baroclinic), solving the Navier-Stokes equations by applying hydrostatic and Boussinesq approximations.
- Unstructured-grid approach based on Arakawa B with triangular meshes (Bellafiore and Umgiesser, 2010; Ferrarin et al., 2013), which provides an accurate description of irregular coastal boundaries

UMEDBS Unstructured-grid MEDiterranean and Black Sea system Domain and grid Comparisons with obs. and models

